November 2017

From the President:

All Rotary Fellowships report back to RI annually. John ZL2JPM gives us a copy of his report here.

For IFROAR, there is generally contact amongst members on a weekly basis via a number of International Radio Nets, but the single biggest challenge and logistical issue is to provide excellent radio operations at the Annual Convention! Radio amateurs are licensed in their countries and may use that license elsewhere in the world if the host country permits it. For example, Brazil does not automatically recognize foreign amateur licenses, but USA does. Thus it is more practical to engage IFROAR attendees at a Convention in a country where their licenses are recognized and that they may also transmit to other members elsewhere in the world.

This year, in Atlanta, there were several new initiatives to achieve that goal. Two powerful transmitting stations were made available to IFROAR and members were able to access them remotely from the Convention Booth. Dozens of contacts were made from the HOF Booth to IFROAR members and other Amateurs throughout the world over five days. These contacts – all via radio – carry the Rotary name and message. This is especially important as a special call sign was made available - W4R – and will now be in the logs of many amateurs worldwide. All in all, the logistical success of Atlanta exceeded that of the two prior Conventions and set the scene for greater membership and rejuvenated attitudes amongst those who either attended or contacted W4R.

But Atlanta Convention was also noteworthy because it included a number of new initiatives to improve international fellowship via radio. New digital modes are now becoming both easier to use and cheaper to implement. These have the potential to dramatically improve both reach and member-type. Reach refers to the globalism of radio transmission and reception and member-type refers to radio options more suited to new entrants and younger amateur radio operators who have neither the physical space for the antennas needed for long-distance communications nor do they have the funds to purchase expensive transmitters. This is in keeping with Rotary’s drive towards a more balanced age/gender membership. In Toronto, the Fellowship will have these new digital modes operational from the Booth – something never done before - and will have the potential to carry Rotary’s name further than before on the airwaves.

Please provide a brief summary of any other noteworthy activities that took place over the past year.

The Fellowship invested much time in improving its administration and accounting functions. An integrated financial and membership system was prototyped and proved highly successful in tripling the number of active members. It is continuing to improve the active membership of the Fellowship as every member – past and present – is now well recorded and their status is able to be communicated to them via this system. It is intended that this prototype be extended to a Web-Based system so that it can be operated from anywhere – a feature that is essential for sustainable governance of the Fellowship.

In similar vein, the Fellowship has a project underway to incorporate under USA laws. This
direction is also part of the strategy for sustainable governance.

An Initiative by the President now has a Radio Home for IFROAR. Provision has been made for IFROAR members to have a radio meeting place on a New Zealand Digital Radio resource (REF626R) – named “R” for “Rotary” (see www.626.nz) and it will develop better friendships within IFROAR’s membership in a way that is more reliable, of higher quality, cheaper and more pervasive than anything we’ve ever had before. Declining radio propagation on the High Frequency Amateur Radio bands (due to solar conditions) has frustrated members and this Digital Radio resource will restore communications to the levels of reliability and quality once enjoyed.

73’s

Dr John P Moriarty

---

**Power Amplifier with a different Tank Circuit:**

Pertti Kause (EA7GSU)

I have recently seen two articles of “old fashioned” amplifiers made with tubes. They both were using modern transmitter tubes with high plate voltage and consequently components not always easy to obtain.

In my old days whilst working in the radio/TV factory, the boss of the lab understood the need to promote creativity and encouraged us to plan and build in our own time, gadgets for our own use. For that purpose we were entitled to freely make use of all material used on the production line, passive and active and also the company’s equipment and machinery.

TV line output stages in b/w constructions were European PL500/504 tubes and in colour receivers were PL509/519 tubes. My first pa was built with PL500’s and was monoband for 20m for a phasing exciter. Next I built a multiband version but with four (later version) PL504 tubes. The Anode voltage was 600V and loaded current was 1A! Understandably the output to the tank circuit was low and particularly high band coils were almost nothing.

The last construction was using PL519’s, three in parallel; the mains transformer was a 230/230V separation transformer and with doubling rectification a loaded 750V anode voltage and 1A loaded current is available. In principle reasonable impedance but the idea of better solution had been born.

Transistor IF amplifiers where gate is loading the preceding circuit, the tuned filter is matched by a coupling link or dividing the tuning capacitor. Why not turn it front-to-back for the tank circuit? The first capacitance of the pi-filter becomes a bit more complicated but all reactances are better under control: a reasonable first tuning capacitor and a real coil. Tuning up the circuit requires few more components to find the best suitable series capacitor for the tuning condenser and if all bands are required, there needs to be a separate switch for added capacitances.

Amplifier was built in the 1960’s and has served well. It has taken 48hr contests and dx hunting with pleasure. Tuning the pa needs a switch to halve the anode voltage and prevent the tubes going “shy”.

Below are the pictures of the station with two-band exciter in a rack and the shell of a never finished second VFO and the front and top view of the PA. Note the 10m coil in the middle: 4 turns. In the diagram are the principle circuit (1), the existing solution (2) and a solution (3), which I THOUGHT to be the circuit inside. It is considerably simpler, but I have never tested it. C1 is 250pF and C2 3×500pF. Capacitors need to be HV versions.

Pictures display only 3 bands.
This is the 3 X PL519 amplifier. Being only 30 x 30 x 12 cm I find the packaging good considering it is from year 1965.

A solenoid Antenna for the 40 meter band :

Jean- Pierre Aubanton (F1CFA)
This antenna was an improbable project. We can also say: A very unusual project. Indeed, how can we convert a quasi null impedance to the 50 Ohms of the coaxial line? It's now completed and is a prototype (see the photo!)

List of components:

Have a 15 meter 2.5 mm² electrical wire, 8 Pieces of wood, bamboo or PVC, a strong 2 meter length mast 1.20 meter length each. Cut a slot at each end. Also a wooden plate 20 x 30 cm large to put on the condenser and a PVC box (to house the ferrite ring).
The wiring is quite easy with 4 turns around the wooden pieces by means of the slots as shown in the photo).
A variable condenser about 50 to 100 picofarads, is suitable for the 40 metre band, and the tuning of this solenoid is really easy.
To convert the high current and the very low impedance, a ferrite ring is used, (size 30 to 50 cm diameter). It must be adjusted in the middle of the solenoid.
4 loops of electrical 2,5 mm² wire around the ferrite ring is the best way to convert the current in a 50 Ohms impedance. It's connected to a PL259 socket, to be put in the PVC box.

Results:
It's in fact a big solenoid which is very glad to work on the desired frequency. The resonance is
extremely sharp. The result is very surprising. It’s quite similar to the one of a magnetic antenna (good sensibility, low noise band, low size, also...). When transmitting, the condenser must be able to support the high voltages. The ferrite ring is reacting as a current transformer capable to support high currents. And, the surprising ROS is, on the prototype, 1/1 !!!! With the prototype, I worked an American station.

He didn’t believe me !!!!

Remarks :
The directivity is to be noticed. And, take care, some Kilohertz away the ROS jumps to 3/1... That antenna can be easily adapted to the 80 m or 160 m band (adding some loops ). This is the main interest.

Some drawings for personal construction :

From Nick Wilkinson (G4HCK)

When I received an email requesting information for the ROAR communicator magazine I thought perhaps I should spend a little time preparing something so here goes:
Where to start that was the first question. Why not Google ROAR? So that precisely what I did and it produced some interesting web sites. The first one led me to a semi animated web site and a song about ROAR
https://www.youtube.com/watch?v=CevxZvSJLk8

I wondered if this tune could be the anthem of the amateur radio ROAR. The lady in the video is a lot prettier than Bill (sorry Bill) so I think she could be head of the group as well. After watching the video (which I must confess made me laugh) I then moved onto the next web site. This led me to the Oxford dictionary definition web site. So what had they to say about ROAR:

1.1 A loud, deep sound uttered by a person or crowd, generally as an expression of pain, anger, or approval. ‘he gave a roar of rage’

1.2 A loud outburst of laughter. ‘her remarks brought a roar of laughter from the old man’

1.3 A very loud, deep, prolonged sound made by something inanimate. ‘the roar of the sea’

The first example made me think about the net on a Sunday morning and the saying ‘O no what’s happened to the propagation today’ and example 3 reminded me of some of the overs on the net and the saying "say again”

So I was getting close to finding out what ROAR was.
No I don’t think I need this or there again I wonder if this is needed at any of the AGMs. So I moved further down the Google page.

This certainly brought me back to amateur radio as I sometimes wonder if the hobby is dying. However when you look at all the different modes SSTV, Easy Pal, JT65, FT8, DMR, Satellite working and of course CW just to mention a few. I think we can say the hobby is morphing into new areas. Just think if we used FT8 on a Sunday as a mode for the net it would be all over in 5 minutes if we made it last. When I first switched on FT8 I could not believe how quickly the qso progressed.

Although this mode is great for those who cannot get good antennas up or can only run low power I am sorry but it’s not my cup of tea although saying that I will let you into a secret I do monitor the qso’s from time to time. Looking back into the past I can recall sending and receiving SSTV with a 5FP7 tube. The pictures were green and black and one picture took 9 seconds to display and by the time the picture got to the bottom it was fading away at the top. All very different today glorious colour!! How times have changed. And so I moved further along the Google pages looking at the response to my enquiry for ROAR. Then it all happened:

I was going to tell you all about this ROAR but I am sure you all know. However I now know that ROAR is one of the best kept secrets within Rotary. Not only was it well down the output from Google but the number of Rotarians I meet who say what is ROAR when I mention it is quite high over here in the UK. Perhaps we should take notice of some of the lyrics in the video at the start of this missive and we should ROAR about ROAR.

---

**IFROAR: DSTAR “How To”**  
October 2017

**Introduction**

As most IFROAR members would agree, the challenge and joy of good HF DX is hard to beat. A great Sunday IFROAR net with everyone copied 5+ between Europe and ZL is “beyond” extremely satisfying. Alas, this ideal is more or less unachievable under current and forecast solar conditions.

As noted at the 2017 Atlanta IFROAR AGM, “We’re not going to let the Sun get away with its poor propagation”, so why not replace the “Ether” with the “Internet” and continue using radio to make those DX QSOs! This document looks at DSTAR as a very viable supplement or alternative to HF and a means of greatly improving communication between IFROAR members.

But first: why bother doing anything differently? Well, it is going to be a very long wait for HF propagation to return to the “armchair” quality it was once renowned for and even if you possess a great rig and capable antennas, conditions are going to be very challenging for the foreseeable future. So why not add to your DX options by using another mode? After all, Amateur Radio is about communication via radio and unless we can do that broadly, effectively and reasonably cheaply, IFROAR risks losing its appeal to a great many of its current and potential members.
Why DSTAR? This digital mode is mature, relatively easy to use, well serviced by repeaters and reflectors around the globe, is accessible at modest cost from multiple suppliers and the quality of transmission is simply excellent. Sure, there are other good digital modes such as Digital Mobil Radio (DMR) and Yaesu’s Fusion but, arguably, these are less mature and not nearly as well-resourced as DSTAR.

Just as we use spot frequencies for our IFROAR nets, we now have a DSTAR resource, courtesy of the proprietors of 626.nz, for IFROAR members to use as a meeting place. We also have an IFROAR DSTAR Forum to use on that system as well. Have a look at http://626.nz and see the IFROAR Forum and the Dashboard where Module R is available for IFROAR members.

Getting DSTAR up and Running
There are many resources on the Web for new entrants to the world of DSTAR and a Web search will leave you breathless. The purpose of this “How-to” is to traverse some of the pathways that can be taken to get up and running on DSTAR.

What do you need?
To make contacts using existing infrastructure there are three unavoidable things:
1. Amateurs must register their Callsign with the DSTAR databases,
2. You must have a DSTAR capable radio,
3. There must a local repeater that you can reach with your DSTAR Radio.

If you are prepared to make new infrastructure available, then the following applies:
1. Amateurs must register their Callsign with DSTAR, as before,
2. You must have access to the Internet,
3. You must have either a
   a. DSTAR capable radio that also features HotSpot or Terminal Access, (e.g. ICOM ID-51a Plus2) OR,
   b. You must construct a local DSTAR Repeater (aka HotSpot) from resources such as;
      i. DVAP HotSpot on 2m plus Windows Computer (cheap laptop)
      ii. Raspberry PI DVAP HotSpot
      iii. Raspberry PI plus DVMEGA Radio Shield for either/or 2m & 70cms
      iv. ZumSpot Hotspot

Option 3(a) is by far the easiest route as it also allows repeater access as well.

Registration
Any Amateur Radio operator may register their Callsign for DSTAR. Without registration, there is NO access to any DSTAR resource, anywhere!
1. There are a number of ways to get your amateur Callsign registered and all methods involve placement of your Callsign and details on the DSTAR database. Some registration pathways involve the local/national Amateur Radio organisation, but you can start here: http://www.dstargateway.org/D-Star_Registration.html. Additionally, the Repeater list (http://www.dstarinfo.com/repeater-list.aspx) will also indicate whether or not you can register there. In VK, http://dashboard.vk2rag.com will take you to a Register Page and in ZL, https://zl2vh.org.nz/d-star/ will do likewise. Only register via ONE such mechanism and preferably one that matches your Callsign (e.g. ZL’s in ZL, VK’s in VK, etc.) since those controlling Gateway access prefer it that way. Note that these Web pages may fail a credentials test – just ignore the errors – in this case!

2. Once registered, your Callsign will be accepted by the entire DSTAR system.
Radios
There are really only two options: ICOM and Kenwood. DSTAR is not proprietary to either supplier, but ICOM has been around for years & Kenwood from 2017. Current examples include: ICOM – ID-51Plus, ID-51a, ID-31a (All have DV & DR Mode and GPS), 2 Band (2m & 70cm) KENWOOD – TH-D74 (Has DV & DR modes and GPS, and all HF Modes receive only, VHF/UHF & FM), 3 Band (2m, 1m & 70cm). Cost? Around $US600.

For those who want a straight-forward fully-purchased solution, the recently released ICOM ID51a Plus2 has, in addition to conventional DSTAR repeater access via the 2m or 70cm bands, in-built Hotspot and Terminal Access Modes. These features eliminate the need for setting up any of the Hot Spot solutions later discussed. Cost? Around $US500. Acknowledging ICOM’s literature for the following diagrams:

In either case, above, a software download from ICOM is needed for the PC or Android Device.

Local Repeaters
The list of DSTAR repeaters is long indeed. If your QTH is within calling distance from any VHF/UHF repeater in this list (http://www.dstarinfo.com/repeater-list.aspx) – then simply purchase/borrow a DSTAR radio and you’re good to go (after receiving notification of your registration).

From a local repeater you will likely be able to use it as gateway to ANY OTHER repeater or more usefully, to a Reflector – such as REF626R where IFROAR has been granted the “R” Module all for the purpose of enhancing DSTAR connectivity to its Members – and of course any curious amateur anywhere else is also welcome – just as they are on “break-in” to an IFROAR net.
The author has a UHF Yagi pointing at ZL2VH – about 18Kms away and this works very well indeed. Connectivity via ZL2VH to any other reflector or repeater is simply a matter of programming the radio with what you want to do.

Susan’ (VK3ANZ) Newbies Guide to Using DSTAR (http://www.emdrc.com.au/vk3er_-/wp-content/uploads/2013/08/Newbies-Guide-to-D-Star-V2.01.pdf) is a good place to start learning about how routing works and if followed up with any Google Search, such as “DSTAR for DUMMIES”, you’ll be inundated with gratis reading material. A typical DSTAR QSO is as follows:

![DSTAR Home HOTSPOT](image)

If Amateur A contacts Amateur B via two DSTAR radio repeaters and can also contact anyone accessing the “non-radio” Reflectors, there is no reason why Amateur A and Amateur B could not also QSO thus:

![DSTAR Home HOTSPOT](image)

**DSTAR Home HOTSPOT**

The Home HotSpot has all the characteristics of a simplex hilltop repeater but is self-contained within a small computer (e.g. Raspberry Pi) connected to the internet via an Ethernet or Wi-Fi connection! Indeed, with a Cellphone, turn on Mobile Wireless tethering, connect your personal DSTAR HotSpot to your Cellphone’s Wi-Fi network and you now have DSTAR wherever you have Cellular data. However, you still need that Radio!

You may also use products like REALVNC to access the “screen” of the computer controlling your Hot Spot. This greatly reduces the complexity of the Hot Spot as, for example, your Cellphone can be both an Internet access port (tethering) and its screen can also be the “screen” of the Hot Spot! You may also control your Hot Spot from anywhere in the world!
With a local HotSpot, your radio operates on minimal power and the HotSpot, with its 5-10mW of power, works effectively throughout your QTH (and beyond in most cases). There is no loss of DSTAR functionality and thus the Internet becomes the new Ether – behaving in all respects like HF, but without propagation issues and with a clarity that is eye-wateringly better than what is currently the case.

**What do you need for a HotSpot?**

There are many options, but this example will serve to illustrate the point:

1. **Purchase a Raspberry Pi 3 model B (RPi)** E.g. https://www.adafruit.com/product/3055. This model has 4 USB, Bluetooth, Ethernet and 2.4 GHz Wi-Fi and supports Keyboard, Mouse, HDMI TV for the Screen – or you can easily connect directly to it via a PC on the same home network via VNC Connect E.g. https://www.realvnc.com/en/connect/download/viewer/.
   i. **Note** also that there are VNC “apps” for Android and IPhone, so you can configure your RPi without the need for any other equipment. HOWEVER, set this up the first time BEFORE you leave Home otherwise you’ll not get access to the RPi without a Screen and Keyboard.

2. **Obtain a wireless modem (e.g. DVAP or DVMEGA).** Sometimes these can be ordered as complete working systems needing only the addition of parameters mentioned in (4). E.g. http://www.combitronics.nl/index.php?route=product/category&path=61

3. **Download an IMAGE file that is preconfigured for the RPI and can be transferred to a micro SD card so that the RPi boots up directly into DSTAR.** This is “almost” fool proof! E.g. http://www.pistar.uk/ OR http://www.westerndstar.co.uk/html/downloads.html
4. Add in parameters such as your CallSign, Local Wi-Fi access codes and QTH location details and, voilà, you have access to ANY active DSTAR resource.

HotSpot costs are modest (< $US200) and overall set-up/learning-time can be very short (allow a week or so for the motivated newbie).

Joe (AF1E) uses “ZumSpot RPI” – a compact and fully set-up Hot Spot that operates on a RPi Zero option W. See http://mmdvm.blogspot.co.nz/2017/07/we-are-very-happy-to-announce-release.html
As noted above, the ID51a Plus2 has an internal Hot Spot mode if you already have another DSTAR radio, or you can use its Terminal Access Mode directly via a PC or Android Phone for stand-alone access to DSTAR from anywhere.

**IFROAR’s Reflector Module**

A recent announcement has been made to all IFROAR members that the proprietors of 626.nz have made the "R" module (i.e. REF626R) available as an IFROAR members’ meeting place. You can see what is going on simply by putting http://626.nz/dashboard/index.php into your Browser.

You can link to the REF626R module by setting the pathway "REF626RL" in the URCALL field on your Kenwood or ICOM. This will link the radio to the reflector (via your HotSpot or via a local Repeater).

**Note:** Kenwood DOES NOT HAVE menu options linking to reflectors that are outside the range REFXXXA-F, and (maybe) neither does ICOM. However, you may enter anything in a URCALL field, so if you can access that field directly in the Radio, then put the above pathway ("REF626RL") in that field.
This ought to return the message “Linked to REF626R”. If you get that message, then Key the “Use Reflector” code (“CQCQCQ”) and you will appear on the Reflector Dashboard and be able to converse.

If you can hear traffic, but can’t communicate you have not enabled “Use Reflector”. IFROAR members also have access to the FORUM set aside for our use. You need to register with 626.nz – nothing difficult here – if you wish to POST>
Summary
DSTAR is an exciting opportunity for IFROAR. We now have a "place" in the Digital World on Reflector 626 Module R thanks to the generosity of the proprietors of www.626.nz and we can now either reach hitherto less active members, or provide alternatives to our existing active members on the HF bands. See you on the Bands and also on REF626R

73's
Dr John P Moriarty (ZL2JPM)
President, IFROAR (2016-2018)

AGM in Toronto next year.
The details are: Metro Toronto Convention Centre, Room 809, 23, June 2018 from 12:30-14:00.

This is a time that has no clashes with any other convention activities and we should urge attendance
IFROAR Accounts for 2016-2017

The Fellowship’s accounts have now been completed. There are two principal revenue accounts – a Current Account held with a USA Bank, and PayPal. This year, the accounting and membership transactions have been performed within an integrated system – prototyped in Excel, but in readiness for a permanent system that could be web-based.

Outgoing Treasurer Ed Tyler (N4EDT) and President John (ZL2JPM) have reconciled earlier manual accounts and bank records to this system and now present the Statements of Financial Position and Performance to Members. Fellowship Members’ Statistics are also included.
## Statement of Financial Position
**Rotarians of Amateur Radio**

**5/10/2017 21:10**

### PERIOD

<table>
<thead>
<tr>
<th>Closing Date</th>
<th>Last Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/06/2017</td>
<td>30/06/2016</td>
</tr>
</tbody>
</table>

### Assets:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>$13,137.13</td>
<td>$12,470.84</td>
</tr>
<tr>
<td>PayPal</td>
<td>$672.14</td>
<td>$86.80</td>
</tr>
<tr>
<td>Investment</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Stock</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Service Supplied</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Receivables (Trade)</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td><strong>TOTAL ASSETS</strong></td>
<td><strong>$13,809.27</strong></td>
<td><strong>$12,557.64</strong></td>
</tr>
</tbody>
</table>

### Liabilities:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Payables (Trade)</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Service Delivered</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td>Net GST Position</td>
<td>$0.00</td>
<td>$0.00</td>
</tr>
<tr>
<td><strong>TOTAL LIABILITIES</strong></td>
<td><strong>$0.00</strong></td>
<td><strong>$0.00</strong></td>
</tr>
</tbody>
</table>

### Equity:

<table>
<thead>
<tr>
<th></th>
<th>Amount</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Equity</strong></td>
<td><strong>$13,809.27</strong></td>
<td><strong>$12,557.64</strong></td>
</tr>
</tbody>
</table>

### GST Position:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening Tax</td>
<td>$0.00</td>
</tr>
<tr>
<td>Tax Paid</td>
<td>$0.00</td>
</tr>
<tr>
<td>0</td>
<td>$0.00</td>
</tr>
<tr>
<td>Grants</td>
<td>$0.00</td>
</tr>
<tr>
<td>Tax Remitted</td>
<td>$0.00</td>
</tr>
<tr>
<td><strong>Net GST Position</strong>:</td>
<td><strong>$0.00</strong></td>
</tr>
</tbody>
</table>

(+) = to Pay
## Statement of Financial Performance

**Rotarians of Amateur Radio**

29/09/2017 17:29  
[Excluding of GST]

<table>
<thead>
<tr>
<th>PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening Date</td>
</tr>
<tr>
<td>Closing Date</td>
</tr>
<tr>
<td>LAST Year</td>
</tr>
</tbody>
</table>

### Categories

#### Income

- Donations: $0.00
- Grants: $0.00
- Bank Interest: $5.33  
- Projects: $0.00
- Refunds Received: $0.00
- Sales: $0.00
- Subscriptions: $2,420.00  
- Tax Received: $0.00

**TOTAL INCOME:** $2,425.33

#### Expenses

- Accommodation: $0.00
- Bank Fees: $46.28  
- Computer Equipment: $0.00
- Computer Networks: $0.00
- Convention Fees: $380.00  
- Cost of Goods Sold: $196.00
- Computer Software: $250.00
- Gifts: $0.00
- Hireage: $0.00
- Insurance: $0.00
- L&P Fees: $0.00
- Marketing: $0.00
- Misc Purchases: $0.00
- Postage: $12.33
- Printing: $497.42
- Promotion: $0.00
- Repairs and Maintenance: $0.00
- Rotary Products: $0.00
- Stationery: $0.00
- Taxes: $0.00
- Travel: $0.00
- Uncategorised: $0.00

**TOTAL EXPENSES:** $1,173.70

**NET Surplus for Period:** $1,251.63

**Monetised Welfare Service Delivered:** $0.00

---

14 | Page
Notes to the Accounts:

The Fellowship is not liable for Goods and Services Taxes (GST).

Equity has increased by $1,251.63 to $13,809.27.

Subscriptions were higher as the new system allowed systematic collection from more members in their Regions.
Regional Membership records are being revalidated. So far RIBI and Japan have been reconciled. Many members have not been given Subscription notices in previous years, but the System now permits better targeting of those who have lapsed. Subscription collection will proceed apace as indicated in the Fellowship Statistics!

**Office Bearers for 2016-2017**

President          John Moriarty ZL2JPM  
President Elect    Ed Tyler N4EDT  
Imm. PP            Bill Main VK4ZD  
Secretary          Phil Fleming N9HWO  
Treasurer          Ingo Werk KK6EWB  
Webmaster          Bill Main VK4ZD  
Editor             Diane Main VK4DI

**Regional Vice Presidents**

Africa             Max Raicha 5Z4MR  

*Australia-New Zealand-Oceania*

ANZO               Phillip Byrne VK2MCB  
Asia               Shunichi (Shun) Fujii JJ1SED

*Central Europe-North Africa-Eastern Mediterranean*

CENAEM             Malcolm Campbell PA3AHC  
RIBI Great Britain Brian Whittaker G3LUW

*South America-Central America*

SACAMA             * open position *

*United States-Canada-Bermuda*

USCB East          Joe Spears AF1E  
USCB West          Steve Bloom KL7SB